Accurately estimating rigid transformations in registration using a boosting-inspired mechanism

نویسندگان

  • Yonghuai Liu
  • Honghai Liu
  • Ralph R. Martin
  • Luigi De Dominicis
  • Ran Song
  • Yitian Zhao
چکیده

Feature extraction and matching provide the basis of many methods for object registration, modeling, retrieval, and recognition. However, this approach typically introduces false matches, due to lack of features, noise, occlusion, and cluttered backgrounds. In registration, these false matches lead to inaccurate estimation of the underlying transformation that brings the overlapping shapes into best possible alignment. In this paper, we propose a novel boosting-inspired method to tackle this challenging task. It includes three key steps: (i) underlying transformation estimation in the weighted least squares sense, (ii) boosting parameter estimation and regularization via Tsallis entropy, and (iii) weight re-estimation and regularization via Shannon entropy and update with a maximum fusion rule. The process is iterated. The final optimal underlying transformation is estimated as a weighted average of the transformations estimated from the latest iterations, with weights given by the boosting parameters. A comparative study based on real shape data shows that the proposed method outperforms four other state-of-the-art methods for evaluating the established point matches, enabling more accurate and stable estimation of the underlying transformation. & 2016 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative Estimation of Rigid-Body Transformations Application to Robust Object Tracking and Iterative Closest Point

Closed-form solutions are traditionally used in computer vision for estimating rigid body transformations. Here we suggest an iterative solution for estimating rigid body transformations and prove its global convergence. We show that for a number of applications involving repeated estimations of rigid body transformations, an iterative scheme is preferable to a closed-form solution. We illustra...

متن کامل

Short paper: Iterative Estimation of Rigid Body Transformations Application to robust object tracking and Iterative Closest Point

Closed-form solutions are traditionally used in computer vision for estimating rigid body transformations. Here we suggest an iterative solution for estimating rigid body transformations and prove its convergence. We show that for a number of applications involving repeated estimations of rigid body transformations, an iterative scheme is preferable to a closed-form solution. We illustrate this...

متن کامل

Compensation of brain shift during surgery using non-rigid registration of MR and ultrasound images

Background: Surgery and accurate removal of the brain tumor in the operating room and after opening the scalp is one of the major challenges for neurosurgeons due to the removal of skull pressure and displacement and deformation of the brain tissue. This displacement of the brain changes the location of the tumor relative to the MR image taken preoperatively. Methods: This study, which is done...

متن کامل

Use of the CT component of PET-CT to improve PET-MR registration: demonstration in soft-tissue sarcoma.

We have investigated improvements to PET-MR image registration offered by PET-CT scanning. Ten subjects with suspected soft-tissue sarcomas were scanned with an in-line PET-CT and a clinical MR scanner. PET to CT, CT to MR and PET to MR image registrations were performed using a rigid-body external marker technique and rigid and non-rigid voxel-similarity algorithms. PET-MR registration was als...

متن کامل

Atlas-Based Segmentation and Tracking of 3D Cardiac MR Images Using Non-rigid Registration

We propose a novel method for fully automated segmentation and tracking of the myocardium and left and right ventricles (LV and RV) using 4D MR images. The method uses non-rigid registration to elastically deform a cardiac atlas built automatically from 14 normal subjects. The registration yields robust performance and is particularly suitable for processing a sequence of 3D images in a cardiac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition

دوره 60  شماره 

صفحات  -

تاریخ انتشار 2016